Power MOSFET

40 V, 69 A, Single N-Channel, DPAK

Features

- Low R_{DS(on)}
- High Current Capability
- Avalanche Energy Specified
- These are Pb-Free Devices

Applications

- CCFL Backlight
- DC Motor Control
- Class D Amplifier
- Power Supply Secondary Side Synchronous Rectification

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

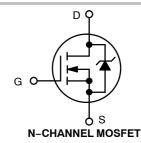
Parar	Symbol	Value	Unit		
Drain-to-Source Voltag	V_{DSS}	40	٧		
Gate-to-Source Voltag	e – Contir	nuous	V_{GS}	±20	V
Gate-to-Source Voltage - Non-Repetitive (t _p < 10 μS)			V_{GS}	±30	٧
Continuous Drain Current (R _{θJC})		T _C = 25°C	I _D	69	Α
(Note 1)	Steady State	T _C = 100°C		49	
Power Dissipation (R _{θJC}) (Note 1)	State	T _C = 25°C	P _D	71	W
Pulsed Drain Current	ulsed Drain Current $t_p = 10 \mu s$			125	Α
Operating Junction and	T _J , T _{stg}	–55 to 175	°C		
Source Current (Body [I _S	30	Α		
Single Pulse Drain-to- Energy (V_{DD} = 50 V, V_{C} $I_{L(pk)}$ = 36 A, L = 0.3 ml	E _{AS}	195	mJ		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	2.1	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	106	

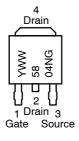
1

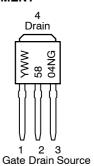

1. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX	
40 V	12 m Ω @ 5.0 V	69 A	
40 V	8.5 mΩ @ 10 V	09 A	



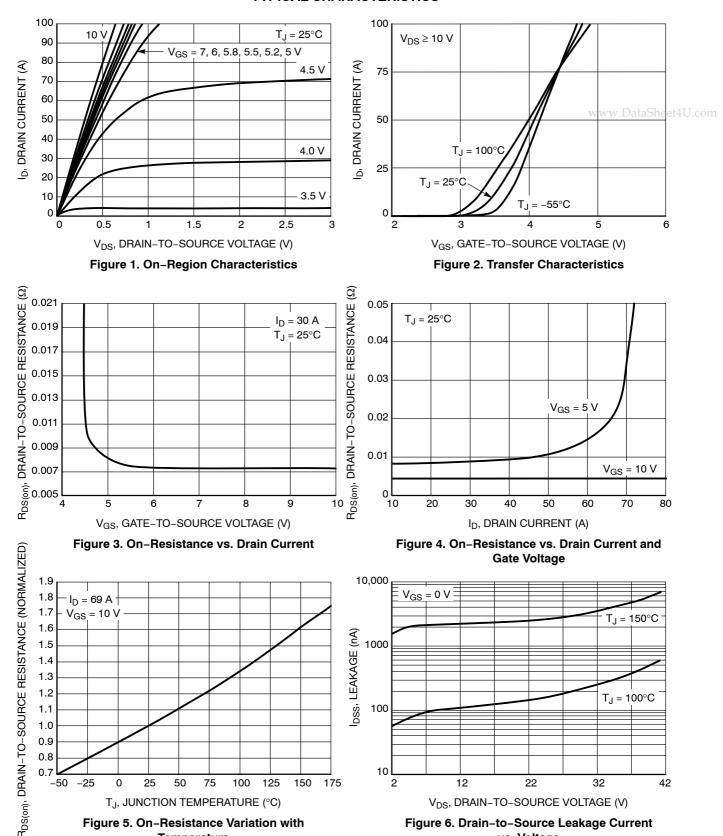

DPAK CASE 369C (Surface Mount) STYLE 2

DPAK CASE 369D (Straight Lead) STYLE 2

MARKING DIAGRAMS & PIN ASSIGNMENT

= Year WW = Work Week 5804N = Device Code = Pb-Free Package

ORDERING INFORMATION


See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Drain-to-Source Breakdown Voltage V _{(BR)DSS} V _{GS} = 0 V, I _D = 250 μA	Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
Drain-to-Source Breakdown Voltage V(BR)DSS/TJ	OFF CHARACTERISTICS					•	•	•
Temperature Coefficient Temperature Coe	Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D :	= 250 μΑ	40	45		V
Vos = 40 \ Vos = 40	Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				41		
V _{DS} = 40 V T _J = 150°C 100	Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0 ^{W.1}	DataShee µ A
Characteristics (Note 2) Continue Con			$V_{DS} = 40 \text{ V}$	T _J = 150°C			100	1
Gate Threshold Voltage V _{GS} (TH) V _{GS} = V _{DS} , I _D = 250 μA 1.5 3.5 V Negative Threshold Temperature Coefficient V _{GS} (TH)/T _J 7.3 mV/°C mV/°C Drain-to-Source On Resistance R _{DS} (an) V _{GS} = 10 V, I _D = 30 A 5.7 8.5 mΩ Forward Transconductance gFS V _{DS} = 15 V, I _D = 10 A 7.9 12 S PhARGES, CAPACITANCES AND GATE RESISTANCES Sthat Resistance Sthat Resistance 310 400 2850 pF Output Capacitance C _{Iss} V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 25 V 310 400 pF Provided Charge Transfer Capacitance C _{Iss} V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 32 V, I _D = 32 V, I _D = 30 A 10 nC Threshold Gate Charge Q _G (TH) V _{GS} = 10 V, V _{DS} = 32 V, I _D = 32 V, I _D = 30 A 10 nC WITCHING CHARACTERISTICS (Note 3) Turn-On Delay Time t ₁ t ₁ 18.7 18.7 Turn-Off Delay Time t ₁ V _{GS} = 0 V, I _S = 10 V, V _{DD} = 32 V, I _D = 30 V, I _S = 10 V, I _D = 30 V, I _S = 10 V, I _S = 10 V, I _S = 0 V, I _S = 10 V, I _S	Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS}$	_S = ±20 V			±100	nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ON CHARACTERISTICS (Note 2)							
Drain-to-Source On Resistance RDS(on) VGS = 10 V, ID = 30 A 5.7 8.5 mΩ	Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 250 μΑ	1.5		3.5	V
$ \begin{array}{ c c c c c } \hline & V_{GS} = 5 \text{ V, } I_D = 10 \text{ A} & 7.9 & 12 \\ \hline \hline & V_{GS} = 5 \text{ V, } I_D = 16 \text{ A} & 12 & 8 \\ \hline & V_{DS} = 15 \text{ V, } I_D = 15 \text{ A} & 12 & 8 \\ \hline & V_{DS} = 15 \text{ V, } I_D = 16 \text{ A} & 12 & 8 \\ \hline & V_{DS} = 15 \text{ V, } I_D = 16 \text{ A} & 12 & 8 \\ \hline & V_{DS} = 25 \text{ V} & 0.0000000000000000000000000000000000$	Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				7.3		mV/°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _I	_O = 30 A		5.7	8.5	mΩ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$V_{GS} = 5 \text{ V}, I_{D}$	= 10 A		7.9	12	1
Input Capacitance	Forward Transconductance	gFS	V _{DS} = 15 V, I _D = 15 A			12		S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CHARGES, CAPACITANCES AND GAT	TE RESISTANCI	ES	•			•	•
Reverse Transfer Capacitance Coss VDS = 25 \ VDS	Input Capacitance	C _{iss}				2460	2850	pF
Reverse Transfer Capacitance C C C C C C C C C	Output Capacitance	C _{oss}				310	400	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{rss}	*DS - 23	,		215	280	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q _{G(TOT)}				45		nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Threshold Gate Charge	Q _{G(TH)}	VGS = 10 V. Vr	ng = 32 V.		2.8		- - -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-to-Source Charge	Q _{GS}				10		
Turn-On Delay Time $t_{d(on)}$ Rise Time t_r Turn-Off Delay Time $t_{d(off)}$ Fall Time t_f DRAIN-SOURCE DIODE CHARACTERISTICS Forward Diode Voltage V_{SD} V _{GS} = 0 V, I_{S} = 10 A I_{J} = 25°C I_{J} T _J = 150°C 0.63 Reverse Recovery Time I_{RR} Charge Time I_{S} = 30 A Discharge Time I_{S} = 30 A	Gate-to-Drain Charge	Q_{GD}				12.6		
Rise Time t_r $V_{GS} = 10 \text{ V}, V_{DD} = 32 \text{ V},$ 18.7 Turn-Off Delay Time $t_{d(off)}$ 26.8 Fall Time t_f 5.9 DRAIN-SOURCE DIODE CHARACTERISTICS Forward Diode Voltage V_{SD} $V_{GS} = 0 \text{ V}, V_{SD}$ $V_{GS} = 0 \text{ V}, V_{SD}$ V_{SD} $V_$	SWITCHING CHARACTERISTICS (Not	e 3)		L		•	•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(on)}				11.8		ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time	† 1	V _{GS} = 10 V. V _F	nn = 32 V.		18.7		1
	Turn-Off Delay Time	t _{d(off)}	$V_{GS} = 10 \text{ V}, V_{DD} = 32 \text{ V},$ $I_{D} = 30 \text{ A}, R_{G} = 2.5 \Omega$			26.8		
Forward Diode Voltage $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time					5.9		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DRAIN-SOURCE DIODE CHARACTER	RISTICS				•		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Forward Diode Voltage	V_{SD}	VGS = 0 V	T _J = 25°C		0.81	1.2	V
Charge Time ta $V_{GS} = 0 \text{ V, dIs/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 30 \text{ A}$ $I_{S} = 30 \text{ A}$ $I_{S} = 30 \text{ A}$			I _S = 10 A	T _J = 150°C		0.63		1
Discharge Time tb I _S = 30 A 9.8	Reverse Recovery Time	t _{RR}		1		21.7		ns
Discharge Time tb I _S = 30 A 9.8	Charge Time	ta				11.9		1
Reverse Recovery Charge Q _{RR} 11.8 nC	Discharge Time	tb				9.8		1
	Reverse Recovery Charge	Q _{RR}				11.8		nC

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

Temperature

vs. Voltage

TYPICAL CHARACTERISTICS

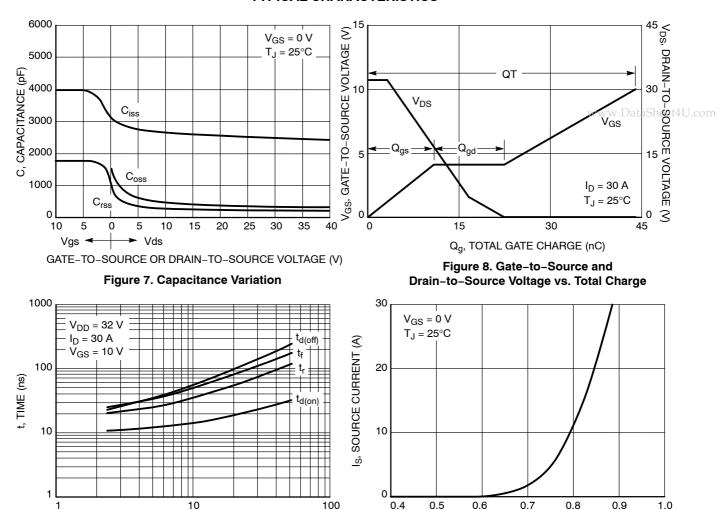
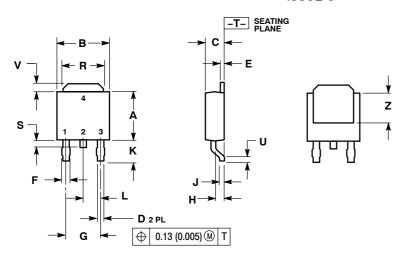


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

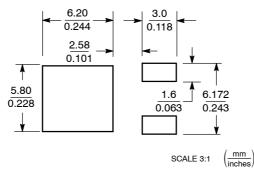
 R_G , GATE RESISTANCE (Ω)

V_{SD}, SOURCE-TO-DRAIN VOLTAGE (V)

Figure 10. Diode Forward Voltage vs. Current


ORDERING INFORMATION

Order Number	Package	Shipping [†]
NTD5804NG	DPAK (Straight Lead) (Pb-Free)	75 Units / Rail
NTD5804NT4G	DPAK (Pb-Free)	2500 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

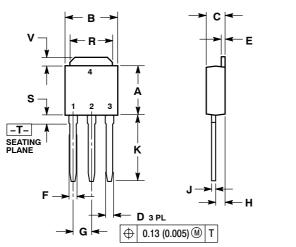
DPAK CASE 369C-01 ISSUE O

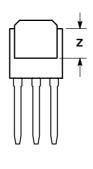
SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- 1. DIMENSIONING AND TOLERANCING
 PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH. ata Sheet 4U.com


	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.22	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
E	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.180	BSC	4.58 BSC		
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.102	0.114	2.60	2.89	
L	0.090 BSC		2.29 BSC		
R	0.180	0.215	4.57	5.45	
S	0.025	0.040	0.63	1.01	
U	0.020		0.51		
٧	0.035	0.050	0.89	1.27	
z	0.155		3.93		


- STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE

 - 4. DRAIN

PACKAGE DIMENSIONS

DPAK CASE 369D-01 **ISSUE B**

NOTES

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
E	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090	BSC	2.29 BSC		
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
٧	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

STYLE 2:

PIN 1. GATE

- 2. DRAIN
- 3. SOURCE DRAIN

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and war engineer trademarks of semiconductor components industries, Ite (SciLLC) solitate services are injective to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative